# A Response (Part I)

A few posts back, reader Loki on the Run brought up several very worthwhile points in his comments. Unfortunately, it was midterm season as school and deadline season at work, and so, I didn’t have the time to write up a proper response. Hopefully, this will be a good start.

Loki wrote:

Another sad aspect of modern teaching is the notion that all students will grow to be 6 foot tall. Given that there is an approximately normal distribution of abilities, not all students are going to be able to deal with Calculus.

First off, we should be careful when we talk about abilities. It’s hard to know exactly what we’re talking about. Whenever we try to measure intelligence, we should be aware that there are at least three different things that we might actually mean. The obvious one is performance. Whatever a student actually does is all we can really ever measure. However, is that really what we mean when we speak of intelligence—what about competence and potential? These things are easy to confuse. So maybe I ought to stop and give an example of what I mean.

There is another complication. Sometimes people extrapolate ability based solely on performance. Should we infer that because you failed your Hawaiian test that you lack the ability ever to master Hawaiian? This raises another interesting question. If student ability really does follow a normal distribution, how do we measure it? Given a good measure, we could save lots of money. Kids could be weeded out early on and pushed into ability-matched professions. We could split the alphas from the betas from the deltas from the gammas. Loki, you and Aldous Huxley would’ve made good friends, I think. Those with little potential could be spared years of needless pain and embarrassment in a school system which, by design, is destined to fail them. Except in the most extreme cases (and even then), it is difficult to gauge a person’s potential ability.

But then again, people aren’t the only things that resist easy measurement. Content, too, can evade classification. Many people point to calculus as the most advanced topic a high school student can ever hope to see—but only if he’s very smart. But why do people believe that? I doubt that calculus, whether it is hard or not, should cap any high school curriculum. (I’ve argued before that statistics would be more useful for everyone.) But I also doubt that calculus has to be hard, or even taught on its own.

Anyone who has ever ridden in a car has felt calculus. Every time a car speeds up or slows down, you feel the effects that calculus describes. Differential calculus is the study of the rate of change, and that’s something that people understand simply through living. The flip side, integration is just as natural. Anyone who has ever noticed that a three-layer cake is thicker than a two-layer cake has used calculus. Anyone who has ever stacked coins or poker chips has a rudimentary grasp of calculus. We even require kids to integrate all the time. Sixth graders have to find the area of a rectangle. By eighth grade, they’ve moved on to the volume of prisms and other solids. And it turns out that using concepts from calculus happen to be quite effective.

I spend a lot of time talking with a math teacher at an inner-city charter school in Dorchester. These kids are typically 3-7 years behind where the curriculum would place them according to their ages. And a back-to-basics approach would have them memorizing formulae blindly, because, as is typically thought, loading them up with advanced concepts would only confuse the matter. Yet empirically, we’ve found that just the opposite appears to be the case. When area is presented as the summation of infinitely thin widths across a given length, kids get it. In fact, when they come to volume, they generalize. A volume, they understand, is built out of infinitely thin cross sections. If the base remains constant, they get it. And there’s transfer!

If kids learn that the area of a rectangular solid is the area of the base times the height, they’re good to go, so long as the shape is a rectangular solid. But if asked to find the volume of a heart-shaped pan whose base and height measurements are given, they don’t know what to do. But my kids from the inner-city know what to do. They look for the perceptual invariants: is the pan made up of the same cross-section throughout? Yes. Do I know the area of the base? Sure do. Do I know the height? Yeah. No problem. They build the volume up. This is exactly how the Riemannian integral works. Kids who are well behind according to the curriculum are using concepts that are considered too advanced for most people. Yet they do it, and they can apply it out of context.

What I’m driving at is that intelligence isn’t an all of nothing venture. And so, it’s probably impossible to quantify it with a single number, so it’s equally impossible to make sense of statements which claim that there is any sort of distribution of ability. I’m not saying that there is not a distribution of performance. We can measure performance (there’s more to say about that, of course). The trick, then, is to recognize when students have done something wonderful, like my kids who use concepts from calculus to find volume.

Technorati Tags:, , , , , , , , , , , , ,

## 2 thoughts on “A Response (Part I)”

1. I think another aspect of the introduction of higher level concepts is that it forces the student to accept a certain understanding to move on. In my own personal experience, once I had to move on to integration and leave differentiation behind (somewhat). By leaving it for a while, I had to accept my limited understanding of it and move on to another topic.

Rather than becoming mired in trying to understand differentiation in every possible way, I had to move on, learn something else, which, in turn made the original topic much clearer.

Little steps forward in a number of areas, rather than one big leap in one area.

2. Zemsky,

I think I know what you mean. It wasn’t until my sophomore year of college that I started really to understand negative numbers. Until then I could manipulate them fine, and could even explain how they worked to some extent, but it wasn’t until I learned about finite fields, complex analysis, groups of rotations and reflections, and used them to work on n-dimensional affine planes embedded into (n+1)-dimensional linear spaces did things start to click more fully.

Now I can explain negative numbers reasonably well to small children while sparing them the mess I went through to understand them. It’s amazing how much geometry you can get out of the real number line.

But your point is well taken, many concepts are interrelated across several chunks of mathematical content. That’s why I don’t think the curriculum needs to be nearly as rigid as policy makers want it to be. Of course, the more flexible a curriculum is, the more rigorous a mathematical training the classroom teacher will need in order to follow it well.