Category Archives: Cybersecurity: Challenges and New Threats

Cybersecurity, a new challenge for the aviation and automotive industries

Cybersecurity, a new challenge for the aviation and automotive industries

Hélène Duchamp, Ibrahim Bayram, Ranim Korhani

Abstract:
This paper will focus on cybersecurity in the civil aviation industry, but will also present some of the threats that exist in a much more daily transportation mode: personal cars.
We will present the stakeholders involved in the aviation industry, point out the sources of the vulnerability of the industry to cyber attacks, and then analyze the efforts put in place to deter cyber attacks against commercial aircraft. The same order of reasoning will be applied to the automotive industry

Introduction

The aviation industry is important to the global economy. In 2013, the air transportation network carried over 48 million tons of freight and over 2.6 billion passengers. Its global economic value was estimated at 2.2 trillion dollars (AIAA, 2013). Any (cyber)-attack in this industry would result in important social and economic consequences.

With the development of new technologies such as internet, the global aviation industry is subject to a new and growing type of threat coming from cyberspace. As in the other industries, cyber threats purposes are for example the robbery of information, political actions, make profit, or simply weaken one stakeholder of the industry.

Because of its complexity and its weight in the economy, breaking the aviation industry’s security constitutes a great challenge for hackers and terrorists. Moreover, this industry relies more and more on information and communication technology (ICT). As an industry that is well known for providing one of the safest type of transportation, it is mandatory for all its stakeholders to understand the risks and to prevent any malicious events for the good of the industry, the economy, the population and the environment.

Read the full strategic report here: cybersecurity, a new challenge for the aviation and automotive industries

References

AIAA. (2013). The connectivity challenge: protecting critical assets in a networked world – a framework for aviation cybersecurity.

Cybersecurity and the Internet of Things

Cybersecurity and the Internet of Things

Sarah Baker, Grégoire Frison-Roche, Barbora Kuncikova

Abstract:

The Internet of Things (IoT) is a topic that gets a lot of attention and has become somewhat of buzzword in business and technology today. In many ways, this hype and excitement is not misplaced, as IoT has fascinating implications and opportunities for both consumers and businesses. However, the cybersecurity threats that this explosive growth represents are sometimes overlooked or not clearly understood. This paper will introduce the concept of IoT, including the definition, trends and applications. The next section will discuss the potential cybersecurity risks for IoT, for both industries and consumers. Finally, the last section will discuss recommended preventative measures and defense mechanisms available, while considering the fast changing nature of IoT technology.

Introduction: What is the Internet of Things?

The past decades have seen huge advances in electronic communications, from the rise of the Internet to the ubiquity of mobile devices. However, this communication is now shifting from devices that simply connect users to the Internet, to communication linking the physical world to the cyber world (Borgia, 2014). Generally speaking, this notion is called Cyber Physical Systems (CPS) and includes technologies such as (i) automation of knowledge work, (ii) Internet of Things, (iii) advanced robotics, and (iv) autonomous/ near autonomous vehicles (Borgia, 2014). However, IoT is considered to be the CPS technology with the largest expected economic impact (Manyika et al., 2013).

Given IoT is one of the most talked about trends in IT, there are as many definitions of the phenomena as there are angles to study. The origins of the concept IoT can be traced back to a group at MIT, who defined it as “an intelligent infrastructure linking objects, information and people through the computer networks, and where the RFID technology found the basis for its realization’’ (Brock, 2001). Today, IoT extends far beyond RFID technology. A more recent definition describes IoT as “a highly interconnected network of heterogeneous entities such as tags, sensors, embedded devices, handheld devices and backend servers” (Malina et al., 2016). The International Telecommunication Union (ITU) describes IoT as “anytime, any place connectivity for anyone… connectivity for anything. Connections will multiply and create an entirely new dynamic network of networks – an Internet of Things’’ (ITU, 2005).

Therefore, the defining attribute of IoT is that it involves things, moving beyond networked computers, tablets or smartphones to include just about any physical object that can be connected and communicate. The value offered by IoT comes from the fact that these objects which are not machines, and do not function like machines are able to gather and communicate data, which means information can be translated into action at astounding rates (Burrus, 2014). The concept behind IoT was aptly captured back in 1999:

If we had computers that knew everything there was to know about things — using data they gathered without any help from us — we would be able to track and count everything, and greatly reduce waste, loss and cost. We would know when things needed replacing, repairing or recalling, and whether they were fresh or past their best. The Internet of Things has the potential to change the world, just as the Internet did. Maybe even more so” (Ashton, 2009)

This strategic report focuses on securing the Internet of Things. Read the full report here: Cybersecurity and the Internet of Things

References

Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7), 97-114.
Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31.
Brock, D. L. (2001). The electronic product code (epc). Auto-ID Center White Paper MIT-AUTOID-WH-002.
Burrus, D. (2014). The Internet of Things is far bigger than anyone realizes. Wired. Accessed November.
ITU. (2005). ITU Internet Reports 2005: The internet of things. Geneva: International Telecommunication Union (ITU).
Malina, L., Hajny, J., Fujdiak, R., & Hosek, J. (2016). On perspective of security and privacy-preserving solutions in the internet of things. Computer Networks, 102, 83-95.
Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive technologies: Advances that will transform life, business, and the global economy (Vol. 12). San Francisco, CA: McKinsey Global Institute.

Cybersecurity & Cyber Threats in Healthcare Organizations

Cybersecurity & Cyber Threats in Healthcare Organizations

Aurore Le Bris, Walid El Asri

Abstract:

Cybersecurity has become a strategic issue for healthcare facilities. This current risky situation comes from an internal double threat: the misuse of IT systems by employees due to their low risk awareness and the lack of proper funding dedicating to Information Security. Simultaneously, the democratization of hacking techniques has also increased the number of potential perpetrators and the variety of their profile. The multiplication of healthcare facilities hit by such attacks reveals how absolutely necessary the question of cybersecurity is. Thanks to the mediatization of these incidents, concerns now grow among general public and authorities, which trigger more and more initiatives to turn things around: FDA, AHA, HITRUST in the USA. A move towards more coordination in necessary. Furthermore, facilities’ staff is essential in solving the hacking issues. Indeed, cybersecurity cannot be improved without training employees to use devices properly, raising their awareness on cyber threats and ensuring their compliance with security policies.

Introduction

Cybersecurity has become a crucial issue for many organizations but also for private individuals. As well as for “regular” crime, anyone may become a target of ill-intentioned people, exploiting the vulnerabilities of information systems (IS) in any possible way. Healthcare organizations are some of the entities we trust the most and that hold the most sensitive information about us: name, date and place of birth, medical records, social security details, etc. Suffering from many flaws (low budget, lack of IT organization, excessive use of legacy systems…), healthcare actors have become easy targets for hackers, facing more and more pressure and threats from them (Fu and Blum, 2013).

This article aims at depicting the current state of cybersecurity in healthcare organizations as well as at understanding the main cyber threats they face and how these last ones could be addressed.

First of all, the stakes and risks associated to the healthcare environment will be presented. The different types of assets likely to be targeted will be reviewed as well as the profile of the potential attackers/threats and their objectives. Then, examples of attack scenarios – that occurred in real life or pentests – will be studied in order to highlight the consequences they may have on healthcare IS. Finally, the current state of cybersecurity in healthcare facilities will be portrayed and possible measures to enhance it will be discussed.

The following strategic report assess new risks and threats towards healthcare facilities and organizations. Read the full report here:
Cybersecurity & Cyber Threats in Healthcare Organizations

References

Fu, K., & Blum, J. (2013). Controlling for cybersecurity risks of medical device software. Communications of the ACM, 56(10), 35-37.