Montecito is now a quarry with houses in it:
So far twenty dead have been removed. It will take much more time to remove twenty thousand dump truck loads of what geologists call “debris,” just to get down to where civic infrastructure (roads, water, electric, gas) can be fixed. It’s a huge thing.
The big questions:
- Did we know a catastrophe this huge was going to happen? (And if so, which among us were the “we” who knew?)
- Was there any way to prevent it?
Geologists had their expectations, expressed as degrees of likelihood and detailed on this map by the United States Geological Survey:
That was dated more than a month before huge rains revised to blood-red the colors in the mountains above town. Worries of County Supervisors and other officials were expressed in The Independent on January 3rd and 5th. Edhat also issued warnings on January 5th and 6th.
Edhat’s first report began, “Yesterday, the National Weather Service issued a weather briefing of a potential significant winter storm for Santa Barbara County on January 9-10. With the burn scar created by the Thomas Fire, the threat of flash floods and debris/mud flows is now 10 times greater than before the fire.”
But among those at risk, who knew what a “debris/mud flow” was—especially when nobody had ever seen one of those anywhere around here, even after prior fires?
The first Independent story (on January 3rd) reported, “County water expert Tom Fayram said county workers began clearing the debris basins at San Ysidro and Gobernador canyons ‘as soon as the fire department would let us in.’ It is worth noting, Lewin said, that the Coast Village Road area flooded following the 1971 Romero Fire and the 1964 Coyote Fire. While touring the impact areas in recent days, (Office of Emergency Management Director Robert) Lewin said problems have already occurred. ‘We’re starting to see gravity rock fall, he said. ‘One rock could close a road.'”
The best report I’ve seen about what geologists knew, and expected, is The Independent‘s After the Mudslides, What Does the Next Rain Hold for Montecito?, published four days after the disaster. In that report, Kevin Cooper of the U.S. Forest Service said, “no one alive has probably ever seen one before.” [January 18 update: Nick Welch in The Independent reports, “Last week’s debris flow was hardly Santa Barbara’s first. Jim Stubchaer, then an engineer with County Flood Control, remembers the avalanche of mud that took 250 homes back in November 1964 when heavy rains followed quickly on the heels of the Coyote Fire. He was there in 1969 and 1971 when it happened again.” Here is a long 2009 report on the Coyote Fire in The Independent by Ray Ford, now with Noozhawk. No mention of the homes lost in there. Perhaps Ray can weigh in.]
My point is that debris flows over Montecito ae a sure bet in geologic time, but not in the human one. In the whole history of Montecito and Santa Barbara (of which Montecito is an unincorporated part), there are no recorded debris flows that started on mountain slopes and spread all the way to the sea. But on January 9th we had several debris flows on that scale, originating simultaneously in the canyons feeding Montecito, San Ysidro and Romero Creeks. Those creeks are dry most of the time, and beautiful areas in which to build homes: so beautiful, in fact, that Montecito is the other Beverly Hills. (That’s why all these famous people have called it home.)
One well-studied prehistoric debris flow in Santa Barbara emptied a natural lake that is now Skofield Park,dumping long-gone mud and lots of rocks in Rattlesnake Canyon, leaving its clearest evidence in a charming tree-shaded boulder field next to Mission Creek called Rocky Nook Park.
What geologists at UCSB learned from that flow is detailed in a 2001 report titled UCSB Scientists Study Ancient Debris Flows. It begins, “The next ‘big one’ in Santa Barbara may not be an earthquake but a boulder-carrying flood.” It also says that flood would “most likely occur every few thousand years.”
And we got one in Montecito last Tuesday.
I’ve read somewhere that studies of charcoal from campfires buried in Rocky Nook Park date that debris flow at around 500 years ago. This is a good example of how the geologic present fails to include present human memory. Still, you can get an idea of how big this flow was. Stand in Rattlesnake Canyon downstream from Skofield Park and look at the steep rocky slopes below houses on the south side of the canyon. It isn’t hard to imagine the violence that tore out the smooth hillside that had been there before.
To help a bit more with that exercise, here is a Google Streetview of Scofield Park, looking down at Santa Barbara through Rattlesnake Canyon:

I added the red line to show the approximate height of the natural dam that broke and released that debris flow.
I’ve also learned that the loaf-shaped Riviera landform in Santa Barbara is not a hunk of solid rock, but rather what remains of a giant landslide that slid off the south face of the Santa Ynez Mountains and became free-standing after creeks eroded out the valley behind. I’ve also read that Mission Creek flows westward around the Riviera and behind the Mission because the Riviera itself is also sliding the same direction on its own tectonic sled.
We only see these sleds moving, however, when geologic and human time converge. That happened last Tuesday when rains Kevin Cooper calls “biblical” hit in the darkest hours, saturating the mountain face creek beds that were burned by the Thomas Fire just last month. As a result, debris flows gooped down the canyons and stream valleys below, across Montecito to the sea, depositing lots of geology on top of what was already there.
So in retrospect, those slopes in various colors in the top map above should have been dark red instead. But, to be fair, much of what geology knows is learned the hard way.
Our home, one zip code west of Montecito, is fine. But we can’t count how many people we know who are affected directly. One friend barely escaped. Some victims were friends of friends. Some of the stories are beyond awful.
We all process tragedies like this in the ways we know best, and mine is by reporting on stuff, hopefully in ways others are not, or at least not yet. So I’ll start with this map showing damaged and destroyed buildings along the creeks:
At this writing the map is 70% complete. [January 17 update: 95%.] I’ve clicked on all the red dots (which mark destroyed buildings, most of which are homes), and I’ve copied and pasted the addresses that pop up into the following outline, adding a few links.
Going downstream along Cold Spring Creek, Hot Springs Creek and Montecito Creek (which the others feed), gone are—
- 923 Buena Vista Avenue
- 1984 Tollis Avenue A
- 1984 Tollis Avenue B
- 1984 Tollis Avenue C
- 670 Lilac Drive
- 658 Lilac Drive
- 2075 Alisos Drive (marked earlier, but I don’t see it in the final map)
- 627 Oak Grove Lane
Along Romero Creek—
- 1000 Romero Canyon Road
- 1050 Romero Canyon Road
- 860 Romero Canyon Road
- 768 Winding Creek Lane
- 745 Winding Creek Lane
- 744 Winding Creek Lane
- 2281 Featherhill Avenue B
Below Toro Canyon—
- 876 Toro Canyon Road
- 572 Toro Canyon Park Road
Along Arroyo Paredon, between Summerland and Carpinteria, not far east of the Toro Canyon—
- 2000 Cravens Lane
Ten flanking Highway 101 by the ocean are marked as damaged, including four on Padero Lane.
When I add those up, I get 142 163* 178† among the destroyed alone.
[* This is on January 17, when the map says it is 95% complete. All the additions appear to be along San Ysidro Creek, especially on San Ysidro Lane, which I believe is mostly in San Ysidro Ranch. Apparently nearly the whole place has been destroyed. Adjectives such as “lovely” fail to describe what it was.]
[† This is on January 18, when the map is complete. I’ll need to go over it again, because there are subtractions as well as additions. Additional note: on March 22, the resident at 809 Ashley Road asked me to make sure that address was also added. There are two homes at that address, both gone.]
Now let’s go back and look more closely at this again from the geological perspective.
What we see is a town revised by nature in full disregard for what was there before—and in full obedience to the pattern of alluvial deposition on the flanks of all fresh mountains that erode down almost as fast as they go up.
This same pattern accounts for much of California, including all of the South Coast and the Los Angeles basin.
To see what I mean, hover your mind above Atlanta and look north at the southern Appalachians. Then dial history back five million years. What you see won’t look much different. Do the same above Los Angeles or San Francisco and nothing will be the same, or even close. Or even there at all.
Five million years is about 1/1000th of Earth’s history. If that history were compressed to a day, California showed up in less than the last forty seconds. In that short time California has formed and re-formed constantly, and is among the most provisional landscapes in the world. All of it is coming up, sliding down, spreading out and rearranging itself, and will continue doing so through all the future that’s worth bothering to foresee. Debris flows are among nature’s most casual methods for revising landscapes. (By the way, I am writing this in a San Marino house that sits atop the Raymond Fault scarp, which on the surface takes the form of a forty-foot hill. The stack of rock strata under the bottom of that hill is displaced 17,000 feet from the identical suite under the base at the top. Many earthquakes produced that displacement, while erosion has buffed 16,960 feet of rock and soil off the top.)
So we might start to look at the Santa Ynez Mountains behind Santa Barbara and Montecito not as a stable land form but rather as a volcano of mud and rock that’s sure to go off every few dozen or hundreds of years—and will possibly deliver a repeat performance if we get more heavy rains and there is plenty of debris left to flow out of mountain areas adjacent to those that flowed on January 9th. If there’s a lot of it, why even bother saving Montecito?
Here’s why:

One enters the Engineering building at the University of Wyoming under that stone plaque, which celebrates what may be our species’ greatest achievement and conceit: controlling nature. (It’s also why geology is starting to call our present epoch the anthropocene.)
This also forecasts exactly what we will do for Montecito. In the long run we’ll lose to nature. But meanwhile we strive on.
In our new strivings, it will help to look toward other places in California that are more experienced with debris flows, because they happen almost constantly there. The largest of these by far is Los Angeles, which has placed catch basins at the mouths of all the large canyons coming out of the San Gabriel Mountains. Most of these dwarf the ones above Montecito. All resemble empty reservoirs. Some are actually quarries for rocks and gravel that roll in constantly from the eroding creek beds above. None are pretty.
To understand the challenge involved, it helps to read John McPhee’s classic book The Control of Nature, which takes its title from the inscription above. Fortunately, you can start right now by reading the first essay in a pair that became the relevant chapter of that book. It’s free on the Web and called Los Angeles Against the Mountains I. Here’s an excerpt:
Debris flows amass in stream valleys and more or less resemble fresh concrete. They consist of water mixed with a good deal of solid material, most of which is above sand size. Some of it is Chevrolet size. Boulders bigger than cars ride long distances in debris flows. Boulders grouped like fish eggs pour downhill in debris flows. The dark material coming toward the Genofiles was not only full of boulders; it was so full of automobiles it was like bread dough mixed with raisins.
The Genofiles were a family that barely survived a debris flow on a slope of Verdugo Mountain, overlooking Los Angeles from Glendale. Here’s another story, about another site not far away:
The snout of the debris flow was twenty feet high, tapering behind. Debris flows sometimes ooze along, and sometimes move as fast as the fastest river rapids. The huge dark snout was moving nearly five hundred feet a minute and the rest of the flow behind was coming twice as fast, making roll waves as it piled forward against itself—this great slug, as geologists would describe it, this discrete slug, this heaving violence of wet cement. Already included in the debris were propane tanks, outbuildings, picnic tables, canyon live oaks, alders, sycamores, cottonwoods, a Lincoln Continental, an Oldsmobile, and countless boulders five feet thick. All this was spread wide a couple of hundred feet, and as the debris flow went through Hidden Springs it tore out more trees, picked up house trailers and more cars and more boulders, and knocked Gabe Hinterberg’s lodge completely off its foundation. Mary and Cal Drake were standing in their living room when a wall came off. “We got outside somehow,” he said later. “I just got away. She was trying to follow me. Evidently, her feet slipped out from under her. She slid right down into the main channel.” The family next door were picked up and pushed against their own ceiling. Two were carried away. Whole houses were torn loose with people inside them. A house was ripped in half. A bridge was obliterated. A large part of town was carried a mile downstream and buried in the reservoir behind Big Tujunga Dam. Thirteen people were part of the debris. Most of the bodies were never found.
This is close to exactly what happened to Montecito in the wee hours of January 9th. (As of March 22, two of the 23 dead still haven’t been recovered, and probably never will be.) (In September 2018 a first responder I talked with said the bodies of a least one the two missing victims, a teenage boy and a toddler, were probably carried to the ocean.)
As of now the 8000-plus residents of Montecito are evacuated and forbidden to return for at least another two weeks—and maybe much longer if officials declare the hills above town ready to flow again.
Highway 101—one of just two major freeways between Southern and Northern California, is closed indefinitely, because it is now itself a stream bed, and re-landscaping the area around it, to get water going where it should, will take some time. So will fixing the road, and perhaps bridges as well.
Meanwhile getting in and out of Santa Barbara from east of Montecito by car requires a detour akin to driving from Manhattan to Queens by way of Vermont. And there have already been accidents, I’ve heard, on highway 166, which is the main detour road. We’ll be taking that detour or one like it on Thursday when we head home via Los Angeles after we fly there from New York, where I’m packing up now.
Expect this post to grow and change.
Bonus links:
- Unofficial Montecito disaster map, via @AI6YRham (Benjamin F. Kuo).
- Outstanding animations showing how California was just recently assembled.
- Independent: After the Mudslides, What Does the Next Rain Hold for Montecito? Thomas Fire Was Just Part One of the Rain Season (best piece I’ve read yet on the geology of the matter).
- Geology.com explains debris flows.
- KEYT Map Rom.
- LA Times: Who they were: The victims of the Montecito mudslides.
- LA Tmes: The California deal: Accepting the calamity along with the splendor.
- Wired: HOW A MUDSLIDE BECOMES A DEADLY TSUNAMI OF ROCKS AND SLUDGE.
- KEYT: San Ysidro Ranch and Riven Rock Ruined in Thomas Fire Mudflows.
- KSBY: An aerial view of Romero Canyon, Glen Oaks and other damage.
- NASA: An “after” photo from space shows the debris flows, if you look closely. Here’s another.
- UCSB in 2001: UCSB Scientists Study Ancient Debris Flows.
- A CNN before-after shot.
- Neighbors Ellen and Oprah Facetime on Ellen’s show. Non-trivial, actually. They’re working to help, and that’s good.
- Edhat, Noozhawk, KCLU, @MontecitoFire, @CountyOfSB, @Cal_Fire, @K38rescue, @SBSheriff