Covers the Fundamentals of RMI

Fundamentally object oriented

Category: Object Oriented Concepts (page 2 of 2)

Operators

Now that you’ve learned how to declare and initialize variables, you probably want to know how to do something with them. Learning the operators of the Java programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result.

As we explore the operators of the Java programming language, it may be helpful for you to know ahead of time which operators have the highest precedence. The operators in the following table are listed according to precedence order. The closer to the top of the table an operator appears, the higher its precedence. Operators with higher precedence are evaluated before operators with relatively lower precedence. Operators on the same line have equal precedence. When operators of equal precedence appear in the same expression, a rule must govern which is evaluated first. All binary operators except for the assignment operators are evaluated from left to right; assignment operators are evaluated right to left.

Operator Precedence
Operators Precedence
postfix expr++ expr--
unary ++expr --expr +expr -expr ~ !
multiplicative * / %
additive + -
shift << >> >>>
relational < > <= >= instanceof
equality == !=
bitwise AND &
bitwise exclusive OR ^
bitwise inclusive OR |
logical AND &&
logical OR ||
ternary ? :
assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more frequently than others; for example, the assignment operator “=” is far more common than the unsigned right shift operator “>>>”. With that in mind, the following discussion focuses first on the operators that you’re most likely to use on a regular basis, and ends focusing on those that are less common. Each discussion is accompanied by sample code that you can compile and run. Studying its output will help reinforce what you’ve just learned.

http://blogs.harvard.edu/objects/how-many-houses-do-successful-real-estate-agents-close-every-year/

Arrays

An array is a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created. After creation, its length is fixed. You have seen an example of arrays already, in the main method of the “Hello World!” application. This section discusses arrays in greater detail.

Each item in an array is called an element, and each element is accessed by its numerical index. As shown in the preceding illustration, numbering begins with 0.

The following program, ArrayDemo, creates an array of integers, puts some values in the array, and prints each value to standard output.

class ArrayDemo {
    public static void main(String[] args) {
        // declares an array of integers
        int[] anArray;

        // allocates memory for 10 integers
        anArray = new int[10];
           
        // initialize first element
        anArray[0] = 100;
        // initialize second element
        anArray[1] = 200;
        // and so forth
        anArray[2] = 300;
        anArray[3] = 400;
        anArray[4] = 500;
        anArray[5] = 600;
        anArray[6] = 700;
        anArray[7] = 800;
        anArray[8] = 900;
        anArray[9] = 1000;

        System.out.println("Element at index 0: "
                           + anArray[0]);
        System.out.println("Element at index 1: "
                           + anArray[1]);
        System.out.println("Element at index 2: "
                           + anArray[2]);
        System.out.println("Element at index 3: "
                           + anArray[3]);
        System.out.println("Element at index 4: "
                           + anArray[4]);
        System.out.println("Element at index 5: "
                           + anArray[5]);
        System.out.println("Element at index 6: "
                           + anArray[6]);
        System.out.println("Element at index 7: "
                           + anArray[7]);
        System.out.println("Element at index 8: "
                           + anArray[8]);
        System.out.println("Element at index 9: "
                           + anArray[9]);
    }
} 

The output from this program is:

Element at index 0: 100
Element at index 1: 200
Element at index 2: 300
Element at index 3: 400
Element at index 4: 500
Element at index 5: 600
Element at index 6: 700
Element at index 7: 800
Element at index 8: 900
Element at index 9: 1000

In a real-world programming situation, you would probably use one of the supported looping constructs to iterate through each element of the array, rather than write each line individually as in the preceding example. However, the example clearly illustrates the array syntax.

Declaring a Variable to Refer to an Array

The preceding program declares an array (named anArray) with the following line of code:

// declares an array of integers
int[] anArray;

Like declarations for variables of other types, an array declaration has two components: the array’s type and the array’s name. An array’s type is written as type[], where type is the data type of the contained elements; the brackets are special symbols indicating that this variable holds an array. The size of the array is not part of its type (which is why the brackets are empty). An array’s name can be anything you want, provided that it follows the rules and conventions as previously discussed in the naming section. As with variables of other types, the declaration does not actually create an array; it simply tells the compiler that this variable will hold an array of the specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;
short[] anArrayOfShorts;
long[] anArrayOfLongs;
float[] anArrayOfFloats;
double[] anArrayOfDoubles;
boolean[] anArrayOfBooleans;
char[] anArrayOfChars;
String[] anArrayOfStrings;

You can also place the brackets after the array’s name:

// this form is discouraged
float anArrayOfFloats[];

However, convention discourages this form; the brackets identify the array type and should appear with the type designation.

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in the ArrayDemo program allocates an array with enough memory for 10 integer elements and assigns the array to the anArray variable.

// create an array of integers
anArray = new int[10];

If this statement is missing, then the compiler prints an error like the following, and compilation fails:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element
anArray[1] = 200; // initialize second element
anArray[2] = 300; // and so forth

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);
System.out.println("Element 2 at index 1: " + anArray[1]);
System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = { 
    100, 200, 300,
    400, 500, 600, 
    700, 800, 900, 1000
};

Here the length of the array is determined by the number of values provided between braces and separated by commas.

You can also declare an array of arrays (also known as a multidimensional array) by using two or more sets of brackets, such as String[][] names. Each element, therefore, must be accessed by a corresponding number of index values.

What Is a Package?

A package is a namespace that organizes a set of related classes and interfaces. Conceptually you can think of packages as being similar to different folders on your computer. You might keep HTML pages in one folder, images in another, and scripts or applications in yet another. Because software written in the Java programming language can be composed of hundreds or thousands of individual classes, it makes sense to keep things organized by placing related classes and interfaces into packages.

The Java platform provides an enormous class library (a set of packages) suitable for use in your own applications. This library is known as the “Application Programming Interface”, or “API” for short. Its packages represent the tasks most commonly associated with general-purpose programming. For example, a String object contains state and behavior for character strings; a File object allows a programmer to easily create, delete, inspect, compare, or modify a file on the filesystem; a Socket object allows for the creation and use of network sockets; various GUI objects control buttons and checkboxes and anything else related to graphical user interfaces. There are literally thousands of classes to choose from. This allows you, the programmer, to focus on the design of your particular application, rather than the infrastructure required to make it work.

The Java Platform API Specification contains the complete listing for all packages, interfaces, classes, fields, and methods supplied by the Java SE platform. Load the page in your browser and bookmark it. As a programmer, it will become your single most important piece of reference documentation.

What Is an Interface?

As you’ve already learned, objects define their interaction with the outside world through the methods that they expose. Methods form the object’s interface with the outside world; the buttons on the front of your television set, for example, are the interface between you and the electrical wiring on the other side of its plastic casing. You press the “power” button to turn the television on and off.

In its most common form, an interface is a group of related methods with empty bodies. A bicycle’s behavior, if specified as an interface, might appear as follows:

interface Bicycle {

    //  wheel revolutions per minute
    void changeCadence(int newValue);

    void changeGear(int newValue);

    void speedUp(int increment);

    void applyBrakes(int decrement);
}

To implement this interface, the name of your class would change (to a particular brand of bicycle, for example, such as ACMEBicycle), and you’d use the implements keyword in the class declaration:

class ACMEBicycle implements Bicycle {

    int cadence = 0;
    int speed = 0;
    int gear = 1;

   // The compiler will now require that methods
   // changeCadence, changeGear, speedUp, and applyBrakes
   // all be implemented. Compilation will fail if those
   // methods are missing from this class.

    void changeCadence(int newValue) {
         cadence = newValue;
    }

    void changeGear(int newValue) {
         gear = newValue;
    }

    void speedUp(int increment) {
         speed = speed + increment;   
    }

    void applyBrakes(int decrement) {
         speed = speed - decrement;
    }

    void printStates() {
         System.out.println("cadence:" +
             cadence + " speed:" + 
             speed + " gear:" + gear);
    }
}

Implementing an interface allows a class to become more formal about the behavior it promises to provide. Interfaces form a contract between the class and the outside world, and this contract is enforced at build time by the compiler. If your class claims to implement an interface, all methods defined by that interface must appear in its source code before the class will successfully compile.

What Is Inheritance?

Different kinds of objects often have a certain amount in common with each other. Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics of bicycles (current speed, current pedal cadence, current gear). Yet each also defines additional features that make them different: tandem bicycles have two seats and two sets of handlebars; road bikes have drop handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used state and behavior from other classes. In this example, Bicycle now becomes the superclass of MountainBikeRoadBike, and TandemBike. In the Java programming language, each class is allowed to have one direct superclass, and each superclass has the potential for an unlimited number of subclasses:

The syntax for creating a subclass is simple. At the beginning of your class declaration, use the extends keyword, followed by the name of the class to inherit from:

class MountainBike extends Bicycle {

    // new fields and methods defining 
    // a mountain bike would go here

}

This gives MountainBike all the same fields and methods as Bicycle, yet allows its code to focus exclusively on the features that make it unique. This makes code for your subclasses easy to read. However, you must take care to properly document the state and behavior that each superclass defines, since that code will not appear in the source file of each subclass.

What Is a Class?

In the real world, you’ll often find many individual objects all of the same kind. There may be thousands of other bicycles in existence, all of the same make and model. Each bicycle was built from the same set of blueprints and therefore contains the same components. In object-oriented terms, we say that your bicycle is an instance of the class of objects known as bicycles. A class is the blueprint from which individual objects are created.

The following Bicycle class is one possible implementation of a bicycle:

class Bicycle {

    int cadence = 0;
    int speed = 0;
    int gear = 1;

    void changeCadence(int newValue) {
         cadence = newValue;
    }

    void changeGear(int newValue) {
         gear = newValue;
    }

    void speedUp(int increment) {
         speed = speed + increment;   
    }

    void applyBrakes(int decrement) {
         speed = speed - decrement;
    }

    void printStates() {
         System.out.println("cadence:" +
             cadence + " speed:" + 
             speed + " gear:" + gear);
    }
}

The syntax of the Java programming language will look new to you, but the design of this class is based on the previous discussion of bicycle objects. The fields cadencespeed, and gear represent the object’s state, and the methods (changeCadencechangeGearspeedUp etc.) define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main method. That’s because it’s not a complete application; it’s just the blueprint for bicycles that might be used in an application. The responsibility of creating and using new Bicycle objects belongs to some other class in your application.

Here’s a BicycleDemo class that creates two separate Bicycle objects and invokes their methods:

class BicycleDemo {
    public static void main(String[] args) {

        // Create two different 
        // Bicycle objects
        Bicycle bike1 = new Bicycle();
        Bicycle bike2 = new Bicycle();

        // Invoke methods on 
        // those objects
        bike1.changeCadence(50);
        bike1.speedUp(10);
        bike1.changeGear(2);
        bike1.printStates();

        bike2.changeCadence(50);
        bike2.speedUp(10);
        bike2.changeGear(2);
        bike2.changeCadence(40);
        bike2.speedUp(10);
        bike2.changeGear(3);
        bike2.printStates();
    }
}

The output of this test prints the ending pedal cadence, speed, and gear for the two bicycles:

cadence:50 speed:10 gear:2
cadence:40 speed:20 gear:3

What Is an Object?

Objects are key to understanding object-oriented technology. Look around right now and you’ll find many examples of real-world objects: your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state and behavior. Dogs have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail). Bicycles also have state (current gear, current pedal cadence, current speed) and behavior (changing gear, changing pedal cadence, applying brakes). Identifying the state and behavior for real-world objects is a great way to begin thinking in terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are in your immediate area. For each object that you see, ask yourself two questions: “What possible states can this object be in?” and “What possible behavior can this object perform?”. Make sure to write down your observations. As you do, you’ll notice that real-world objects vary in complexity; your desktop lamp may have only two possible states (on and off) and two possible behaviors (turn on, turn off), but your desktop radio might have additional states (on, off, current volume, current station) and behavior (turn on, turn off, increase volume, decrease volume, seek, scan, and tune). You may also notice that some objects, in turn, will also contain other objects. These real-world observations all translate into the world of object-oriented programming.

Software objects are conceptually similar to real-world objects: they too consist of state and related behavior. An object stores its state in fields (variables in some programming languages) and exposes its behavior through methods (functions in some programming languages). Methods operate on an object’s internal state and serve as the primary mechanism for object-to-object communication. Hiding internal state and requiring all interaction to be performed through an object’s methods is known as data encapsulation — a fundamental principle of object-oriented programming.

Consider a bicycle, for example:

By attributing state (current speed, current pedal cadence, and current gear) and providing methods for changing that state, the object remains in control of how the outside world is allowed to use it. For example, if the bicycle only has 6 gears, a method to change gears could reject any value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of benefits, including:

1- Modularity: The source code for an object can be written and maintained independently of the source code for other objects. Once created, an object can be easily passed around inside the system.
2- Information-hiding: By interacting only with an object’s methods, the details of its internal implementation remain hidden from the outside world.
3- Code re-use: If an object already exists (perhaps written by another software developer), you can use that object in your program. This allows specialists to implement/test/debug complex, task-specific objects, which you can then trust to run in your own code.
4- Pluggability and debugging ease: If a particular object turns out to be problematic, you can simply remove it from your application and plug in a different object as its replacement. This is analogous to fixing mechanical problems in the real world. If a bolt breaks, you replace it, not the entire machine.

Newer posts