With the knowledge you now have of the basics of the Java programming language, you can learn to write your own classes. In this article, you will find information about defining your own classes, including declaring member variables, methods, and constructors.

You will learn to use your classes to create objects, and how to use the objects you create.


The introduction to object-oriented concepts in the lesson titled Object-oriented Programming Concepts used a bicycle class as an example, with racing bikes, mountain bikes, and tandem bikes as subclasses. Here is sample code for a possible implementation of a Bicycle class, to give you an overview of a class declaration.

public class Bicycle {
    // the Bicycle class has
    // three fields
    public int cadence;
    public int gear;
    public int speed;
    // the Bicycle class has
    // one constructor
    public Bicycle(int startCadence, int startSpeed, int startGear) {
        gear = startGear;
        cadence = startCadence;
        speed = startSpeed;
    // the Bicycle class has
    // four methods
    public void setCadence(int newValue) {
        cadence = newValue;
    public void setGear(int newValue) {
        gear = newValue;
    public void applyBrake(int decrement) {
        speed -= decrement;
    public void speedUp(int increment) {
        speed += increment;


A typical Java program creates many objects, which as you know, interact by invoking methods. Through these object interactions, a program can carry out various tasks, such as implementing a GUI, running an animation, or sending and receiving information over a network. Once an object has completed the work for which it was created, its resources are recycled for use by other objects.

Here’s a small program, called CreateObjectDemo, that creates three objects: one Point object and two Rectangle objects.

public class CreateObjectDemo {

    public static void main(String[] args) {
        // Declare and create a point object and two rectangle objects.
        Point originOne = new Point(23, 94);
        Rectangle rectOne = new Rectangle(originOne, 100, 200);
        Rectangle rectTwo = new Rectangle(50, 100);
        // display rectOne's width, height, and area
        System.out.println("Width of rectOne: " + rectOne.width);
        System.out.println("Height of rectOne: " + rectOne.height);
        System.out.println("Area of rectOne: " + rectOne.getArea());
        // set rectTwo's position
        rectTwo.origin = originOne;
        // display rectTwo's position
        System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
        System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);
        // move rectTwo and display its new position
        rectTwo.move(40, 72);
        System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
        System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);

This program creates, manipulates, and displays information about various objects. Here’s the output:

Width of rectOne: 100
Height of rectOne: 200
Area of rectOne: 20000
X Position of rectTwo: 23
Y Position of rectTwo: 94
X Position of rectTwo: 40
Y Position of rectTwo: 72

The following three sections use the above example to describe the life cycle of an object within a program. From them, you will learn how to write code that creates and uses objects in your own programs. You will also learn how the system cleans up after an object when its life has ended.