~ Archive for Asia Pacific ~

The future of urban migration, green construction and turning carbon dioxide into building materials

ø

Written by Zeng Han-Jun

 

Most people aspire to better their lives. Some achieve it by seeking better employment opportunities and others through migration. There are many ways to achieving it and no matter which channel they rely on, I think that one of the driving factors, is because they are aware that it is attainable. In the past, there are some people who had no way of knowing how they could progress in life. To do so meant that they had to either: adopt a shotgun approach, trying out many different options and seeing which would yield results or simply just forging ahead with whatever opportunities that they had, without knowing and/ or caring how things would turn out.

 

Technology is changing everything. Information is freely available everywhere as long as you have access to at least 2G internet network. Now, with the speed at how internet technology is progressing, there is a very high chance that most of us would be enjoying much cheaper internet services and greater internet coverage. Cheaper internet allows more people to digest contents from social platforms and this increases awareness of how others in foreign countries are living their lives, for example, eating habits, living conditions, working conditions, salaries drawn and so on.

 

Against this backdrop, some might start to think that the grass is greener on the other side and then aspire to migrate, for that kind of lifestyle. This is one of the factors that drive migration and will increasingly be so. In fact, I believe that the focus should be on urban migration because many of the office-based jobs that the younger generations yearn for, are mostly based in urban environment.

 

For perspective, according to World Bank’s data, the urban and rural populations in 2007 were almost exactly equal at 3.33 billion each. Fast forward to 2020, the urban populations has increased beyond 4.4 billion, while the world’s rural populations had increased only slightly beyond 3.4 billion. We cannot be sure if this is due solely to urban migration, but by observing the shape of the trend, the plain reality is that our urban population is increasing at an increasing rate. Also, it appeared that the rural population has started to taper off in 2020 and might set to decrease in the short-term future.

 

 

This shows clearly that more people want to migrate to urban environment. As such, governments in choice areas for migration will have to tackle this issue and this could mean allocating substantial amount of public funding and also chaperoning more private investments into building more urban spaces for this group of people. They need to anticipate this and prepare in advance so that they are able to develop sufficient buffer to maintain the livability of their environment.

 

The below chart, reproduced from WEF, reveals some interesting trends, painting North America, western parts of Europe and Australia as the traditional centers of migration growth. In the same chart, it highlighted cities like Singapore, Seoul, Tokyo, Bangkok, eastern parts of Europe, Southern Africa, certain places in South America, etc as the new centers of migration growth. As such, the livability of these centers of new migration growth is going to be an important topic because it will be one of the defining factors when it comes to attracting talents.

 

 

The livability of urban environment is the outcome of the balance among important factors such as the ability of a society in providing sufficient and good employment opportunities, ensuring high quality of life and fostering an environmentally friendly built environment. It is a dynamic process; its outcome constantly being shaped by movement of people in and out of the urban environment.

 

Facilitating the movement of people has its fair share of challenges, some of which could disturb the sensitive balance of livability in many societies.  One way to solving this, is through creative and innovative shaping of urban environment so that it allows for sufficient living spaces, non-disruptive flow of people and goods, and designing pockets of areas for somewhat private gatherings. All these without stifling the exuberance of the human spirit.

 

 

This is achievable, a concept that has been brought to life in some of the best parks in the world and it could be adapted for urban environment as well – a clever fusion of the natural environment and elements and infrastructure, combined with a keen understanding of social behavior. There are also many naturally occurring environments that foster this kind of openness and dynamic interactions. These types of spaces could also be found in pockets of forests or along flowing rivers where wonderous diversity of organisms live together in high density. Similar concepts could be found in many other parts of nature as well. Nature is an excellent source of inspiration.

 

One thing for sure. Reimagination of our built environment to handle increasing urban migration, will require substantial amount of construction work. These construction works must be strategically planned, so that we could avoid the urban sprawl that is found in many cities around the world. Another thing to note, is that construction is both energy- and material-intensive. The sector is significant in GHG emissions and when adding emissions from the building construction industry on top of operational emissions, the sector accounted for 38% of total global energy-related CO2 emissions. Urban migration trend could push this figure up as the years go by.

 

 

In fact, the effects would be more pronounced in the new centers for migration growth, that is, Singapore, Seoul, Tokyo, Bangkok, eastern parts of Europe, Southern Africa, certain places in South America, etc. And because of the possible uptrend of carbon emission and how such metrics are being reported internationally, these locations could become possible candidates for being flagged out as high environmental polluters because of their construction activities in the short- to medium-term future.

 

 

Most of these new centers of future migration growth, already have high trading volume.  It would be risky to their trading activities if these countries were flagged out as high environmental polluters, as this would stress trade agreements and impede supply chain in the short- and medium-term future.

 

Timber is already in very short supply. Switching to timber form of construction, could potentially attract bad actors into the market space and result in even more illegal logging of trees. Advancements in satellite and traceability technology could slow down these bad actors and foster sustainable harvesting.

 

However, even with sustainable and regenerative techniques, we need to be aware that trees, like all products of nature, need sufficient time to grow into healthy status before it is ripe for timbering. For the trees to reach their full growth, it really depends on the climate and the water available. First, our climate is changing therefore the effect on trees is unpredictable. Second, we are running out of fresh water and seeping of saltwater inland is already threatening many fauna and flora species around the world. In tropical climates with warm weather and a plentiful water supply, a tree could become fully grown in 30 years. A tree in cooler regions may take several hundred years to reach full maturity depending on the tree species.

 

Until we have rejuvenated our green lushes to a balance point, we might need to change the way we construct our urban spaces via green steel, green concrete, green design and so on. Not just moderating and lowering the amount of carbon emissions from these construction activities but thinking of methods to harness carbon dioxide and turning them into building materials. That means being bold with our approaches, elevating ourselves beyond the Net Zero principal. One promising area of research is upcycling carbon dioxide into building materials such as concrete.

 

Cement production, which is used to make concrete, accounts for up to 5% of total global carbon emissions. Current research and development efforts have demonstrated that reduction of the carbon and water footprint in concrete production can be achieved by curing it with waste CO2 rather than with water. Again, I have to highlight that water scarcity is affecting many parts of the world and we need to think of ways to reduce the amount of water that is used in industrial and construction activities.

 

Direct carbon capture technology is already available to augment this process, but the process of harnessing carbon dioxide for concrete production has not been able to reach the point whereby it could scale commercially. Countries that could fast-track this development are those that already have strong private-public partnership between the building regulators, research community and builders. These bodies of collaboration are in an excellent position to capture the future market of green construction.

Moving the global mindshare towards a sustainable green future

ø

Written by Zeng Han-Jun

 

Looking through the recent report released by Vivid Economics (VE), I cannot help but zoom into the stellar performance of Canada, how they have reversed their poor performance and topped the chart in creating stimulus packages that better our natural environment. The chart below, reproduced from VE’s report, is an index that attempted to capture the so-called greenness of stimulus package by 11 major economies.  Basically, it is a measure of the amount of money that governments spent on stimulating their economies during the Covid-19 pandemic, and to check on how much of that contributed to greening our environment.

Canada did well, as you can see from this chart. The country managed to secure third place, ranking just behind the European Union, and they managed to pull this off from a negative Greenness of Stimulus Index (GSI) score in October 2020. Additionally, the country further pledged more than USD$12 billion over five years for public transport, cementing their support for their sustainability drive. This showed that the government is committed to improving and that strong environmental stimulus measures can overcome even poor past performance.

What Canada has done to achieve this, is that they have provided an entire suite of measures such as tax deferments, direct payments and wage subsidies in order to support local businesses.  Those portions that went to supporting the agriculture, energy, green transport and nature-based solutions initiatives, helped to improve Canada’s GSI score. Those that went to supporting airport, airline support and road network development policies, contributed to the decline of Canada’s GSI score. Overall, after netting the improvements against the declines, Canada turned out pretty well, and as I mentioned earlier, the outcomes made me very interested in the details of the GSI framework.

 

The GSI framework took into account the amount of stimulus money that went into environmentally relevant sectors, existing green orientation of those sectors and the efforts to steer stimulus toward (or away from) sustainability. Based on the report, the environmentally relevant sectors are agriculture, industry, manufacturing, waste, energy and transportation.

 

We do not know the exact details of the calculations and what goes into the equations; Are there any weightages to the sectors? If so, how are the weightages are derived? Are the weightages adjusted for the environmental viability of the sectors for the short-, medium- or long-term outlook (for example, how does the introduction and impact of emerging technology such as sustainable aviation fuel, road surface chargers, etc, affect the transport sector)? Is the money spent, averaged against land size or per capita? How do they deal with those countries that do not have all the environmentally relevant sectors for example, agriculture? What about extremely pollutive sectors that cause direct and indirect environmental harm such as the fashion industry? Why do they exclude these sectors and include others?

 

We have no way of knowing these. In the case of Canada, the country pumped significant stimulus into the agriculture sector and that helped to push up the GSI score. Some countries may not have or are unable to have significant presence in certain sectors due to geographical limitations. Should these countries be included in the basket?

 

There are so many questions, but, then again, the survey and the index managed to give a rough sense of what each country is doing for their respective sustainability journey. Plus, it sort of emphasizes the importance of the role that government plays in advancing the green economy.

 

In fact, there are so many things that we have to do to green our future. My only fear is that we cannot visualize the vast number of details to keep things going; some of which require a total transformation of job scopes, in others the creation of entirely new jobs that we cannot even imagine now. All of which require substantive efforts in education, re-education, encouragement, policy shifts and private-public partnerships. All these, in order to shepherd as much interest as possible towards positive transformation. So, what else can we do?

 

Sustainability policy

We need a roadmap that fosters innovations to reduce dramatically the cost of adopting renewable energy. We know that the cost of production, especially for solar, is dropping. By right, that should tease countries into wider adoption of solar, but I argue that the adoption dynamics is not simply due to a single factor. The below chart is reproduced from IEA, and it showed that China accounted for 46% of the new generating renewable capacity added in 2021, mostly in offshore wind which increased sixfold. In Europe, solar accounted for most of the growth, with notable projects in Germany, Poland, France and Spain. India’s, ASEAN’s and MEA’s take up rate in the measured categories of renewable energy, paled in comparison to those of China’s, USA’s and Europe’s.

According to recent trailing 12 months estimates by IEA, the cost of polysilicon used in solar panels has more than quadrupled, while the price of steel rose by 50% and copper by 70%. Overall, raw material costs for all types of renewable energy were 15% to 25% higher. Inflation and uncertainties of global markets could add inflationary pressure on the already rising cost of materials, materials acquisitions and construction of renewable energy facilities.

 

Additionally, ESG regulations are closing onto mining activities, putting the lenses on mining’s impacts on the environment and nearby communities, energy sources used in mining operations, behavior of security forces in mining areas, treatments of waste discharges, exit strategies of miners from exhausted mines and the list continues. Plus, countries are going after the same materials that exist in finite amounts. All these compounds and complicates the acquisition of materials, but at the other end of the spectrum, I say that there has never been a brighter future for companies that are providing advanced recycling services.

 

Also, on the upside, I argue that there is a lot of potential for India, ASEAN and MEA to play catch up and it is important that they do. The military aggression by Russia in Ukraine has exposed not only vulnerabilities in the global supply chain network but also in energy policies. Renewable energy capabilities are ways to mitigate this issue, but we need innovations that further reduce the cost of adopting these alternative energy sources, for the reasons that I have stated above.

 

Transition strategy

Steering away from this, I want to dive somewhat into the operations underlying policies. Effective changes take time, require investment and need effort. All of these cannot gel unless there is significant cooperation between the people, public and private segments. In this, I see clearly that there is a lot of opportunities for transition finance to play a critical part in shaping the ongoing narratives that are brewing in different sectors along the short-, medium- and long-term future.

 

The details are important. For example, preparing the student body for the future of work, requires clever policies, cleverer implementations and smart monitoring. Smart monitoring is critical especially for large jurisdictions. Quick and drastic pivots are often… disastrous.  Likewise for the existing workforce, judicious attempts should be made to pinpoint and identify largely similar work patterns between existing industries and future industries, thereby using the observations as a bridge for the transition. Similarly for equipment, just as Heckler and Koch adapted their sewing machines into the present-day sub machine guns HK MP5 or how some countries are adapting their hydropower dams into solar power plants, we must also adapt accordingly with the times. All these require innovators, scientists, engineers, education specialists, etc to come together and focus their collective intellectual prowess to effect a transformative change.

 

Establishment of climate change measures by the government

Elected governments should also play their parts well. Apart from establishing decarbonization policies and roadmaps for climate change measures, they could further enhance their value-add by (1) coordinating and facilitating collaborations between industry groups, financial institutions and various government agencies, (2) fostering an environment whereby public sector agencies and educational institutions are able to advance, retain and accumulate knowledge in specialized technical domains, (3) increasing awareness of sustainability and climate change issues among the citizens and encouraging them towards a Net Zero future, and (4) deploying government funds properly with an incentives and subsidies system that uplifts citizens towards a sustainability-oriented mindset – which is what I hope that the Green Stimulus Index (GSI) is trying to promote.

 

Public sector, unlike most in the private sector, have the capacity to look further across the horizon, and plan for the future. Public sector agencies usually are not tied to short-term demands for financial performances that are largely driven by profit-seeking actors. In fact, some public sector agencies are able to aggregate data from various sources, to construct a slightly better-informed picture of what is going on in the world, and they should make good use of that advantage.

 

These public sector players are able to establish trends and recognize patterns that may not be so obvious to some of their private sector counterparts. As such, they should work closely with the markets to shape and move the conversation towards the greater good for everyone, all these while balancing the private sector’s profit-seeking behavior. This creates a win-win-win outcome for people, public and private sector. Some private sector counterparts are in the better position to harness useful data and subsequently develop meaningful information. These organizations could explore to ease any potential frictions with policy makers, by extending their capabilities to augment policymaking and of course, treading carefully along and around privacy issues.

 

Establishment of a green financial system

The financial system should play a strong support role to what the governments are doing. According to the result of a survey conducted across 9,443 respondents in 2020, published by Statista in 2022 and reproduced below, 14% of small- and medium-sized companies in the United States had debt outstanding between USD$50,000 and USD$100,000. This means that 79% had outstanding debts. Plus, NASDAQ recently reported that there are still strong demands for bonds despite the Fed looking to raise interest rates in order to keep inflation in check. This goes to hint that the financial markets, through its various instruments, should still have some level of influence over corporate behavior.

 

If they are seeing what the public sector is seeing, and also in preparation for changing consumer behavior and job-seeking behavior for example, like those that would surface from the emerging Gen A cohort. Then, it would be logical to put in place the pillars and sandboxes for innovations, digital platforms, external certifications, ratings, accounting standards, risks metrics, risks appetites, etc. Additionally, also shaping intermediaries like venture capitalists, private equities and working with game-changing actors like FinTech providers.

 

This could enable a new financial market that is in a better position to handle green products with clear sustainability-linked KPIs, for example, private-public partnerships, infrastructure finance, transition finance, blended finance, green bonds, ESG funds, sustainable indices, securitization and derivatives, etc.

 

Financial markets should work closely with industry experts and government bodies to chisel and chip away bits and pieces of old financial framework, artfully hammering out a roadmap for green finance in general. Changes such as developing a sensible carbon pricing system, strengthening transparency, promoting information disclosure and tweaking the incentive framework amongst others, to shape risk and return, is a definite must. This would help in proliferating extensively and intensively the sustainability mindshare.

 

Potential future scenario of Lithium, Electric Vehicles (EVs) and the rise of alternate energy like Hydrogen

1

Written by Zeng Han-Jun

 

The energy crisis sparked by Russia’s military aggression had many rethinking about the future of energy and justly as well, because both events, the Covid-19 pandemic and Russia’s military aggression have disrupted supply chain and caused energy prices to spike. This has affected many people’s standard of living in many ways, one of which is to physically suffer through the cold weather and it might get worse during winter. I strongly believe that those who spent most of their lives in the global south, might find it difficult to understand how bitter cold winters can be in some parts of the world and the importance of keeping warm when it freezes. It is a very painful lesson that stemmed partly from over-relying on a handful of traditional energy sources.

 

As such, it is logical that there is a growing demand for alternative energy sources in many areas, from powering factories, heating up homes and offices, to moving vehicles. In the earlier phase of the growing demand, the narrative was that using fossil fuel is bad for the environment because of the substantial release of carbon into our atmosphere. That awareness played an important role in promoting electric batteries as an alternate mean of powering vehicles.

 

In my earlier think piece, I discussed about the current production level of lithium, which is an important component of the EVs’ electric battery, and how it pales when compared to the estimated demand for lithium by 2030. If you refer to the heat map below, you would be able to estimate that the total global lithium production stood at roughly around 82,200 tons. Several current estimates and studies showed that the total global demand for lithium in 2030, will go far beyond 82,200 tons. In exact figure, it is more than 1.9 million tons which is equivalent to 23 times more than the total global production figure in 2020.

 

Now, if you were to refer again to the heat map produced by the U.S. Geological Survey, you will gather that the total global store of lithium is roughly about 50 million tons. At the first glance, it may seem that we have enough lithium to go around and technically could continue with mining. If the global demand is to peak at 1.9 million tons in 2030, there is still enough lithium to extract for another good 26 years, but in reality, demand for lithium will most likely continue to grow after 2030.

 

This is why analysts have put out the figure that we could be in short supply of lithium by 2050. Some people that I have spoken to, believe that lithium recycling technology would be more stable and productive, thus enabling the circulation of mined lithium for industrial uses for many more years after 2050. And this is their justification for greater activity in lithium mining.

 

We would if we could but should we really do so?

 

I think that it is not feasible because of the following five reasons. First of all, the physical disturbances to the environment and communities that are living near to the mines. Second, carbon emission of the mining operations. Third, the future geopolitical tension that it creates and fourth, creating a single point of failure by focusing too much on electric batteries. Let me explain why.

 

1. Physical disturbances to the environment and nearby communities

Now, partly because of expanding interest in sustainability, people are starting to understand the impacts that some human activities, including mining, has on the environment. I see that the current narrative has evolved into questioning whether or not Electric Vehicles (EVs) are truly one of the silver bullets to saving our environment or merely just kicking the can down the street. First of all, I noted that many apply a broad understanding of what they know of mining i.e. the usual digging of earth, crushing boulders and deployment of many environmentally unfriendly technology, to lithium mining. Mining activities are generally all the same, but it is quite different with lithium mining at the moment.

 

Lithium is historically known to be produced from two sources: brines and hard rock mining. Lithium produced from brines is a cost-efficient process. These brines containing lithium are derived entirely from the leaching of volcanic rocks. The cost of lithium produced from hard rock mining is double than that of what is extracted from brines containing the metal. Mining starts by drilling a hole and pumping brine to the surface. Miners then leave it to evaporate for months, first creating a mix of manganese, potassium, borax, and salts which is filtered and placed into another evaporation pool.

 

It would take roughly between 12 and 18 months for that mix to be filtered enough in order to be able to extract the lithium carbonate. While it is relatively cheap and effective, the process needs a lot of water, estimated at 1.9 million liters per ton of lithium extracted.

 

For perspective, it was estimated that it would take around 63 kg of 99.5% pure lithium to make a 70 kWh EV battery pack. This means that the manufacturing would use up more than 119,000 liters of water, equivalent to satisfying a single full grown person’s drinking need for 32,162 days (~ 88 years).

 

That’s just one way to see it. Here is another way. Estimates of water audits showed that it takes about 237 liters of water to produce about 1 kg of cabbage, so instead of producing one battery pack, with the same amount of water, you could technically produce about 502 kg of cabbage which I think, could be used to feed a small family for about a year or so? Instead of cabbages, you could also divert water to planting trees as well. So, the mining process diverts water away from what the environment and man need.

 

These are the opportunity cost to manufacturing a single EV battery pack. However, I could also reframe my thinking and adopt a green and longer-term perspective. I could adapt the single battery pack to other environmentally friendly uses that might potentially produce more water, food, greenery or other social benefits than what the manufacturing originally consumes. That being the case, I might essentially, at multiple levels, be producing an ESG- (Environmental, Social and Governance) friendly product.

 

2. Carbon emission of the Lithium mining operations

The below graph, produced by the International Energy Agency in 2021, is a very interesting chart. It shows that the current Lithium mining pathway produces roughly about 2.8 tCO2 per tonne LCE equivalent, much lower than most other types of mining operations.

 

At this level of activity, the production houses are churning out roughly about 82,200 tons of lithium (2020 figures). We would have to activate or maybe even develop other ways of extracting lithium if we are going to meet the growing demand. Meeting growing demand for lithium could lead to higher carbon emission. Based on this graph, by activating all known means at the moment, we would increase the carbon emission of lithium mining to 35.2 tCO2 per tonne LCE equivalent, from 2.8 tCO2 per tonne LCE equivalent (~ 1,257% increase).

Most people would think that since other types of activities are faring much worse, so why the focus on lithium mining? The thing is, every bit counts, and the ESG and sustainability focus is slowly and surely extending to all domains, not just lithium mining. Provided that no major events occur and shake the fundaments of the current world structure, ESG and sustainability certifications and regulations most definitely will cover all industries in the future, hopefully moderating carbon emission and ease the global temperature rise to a more human-acceptable level.

 

3. Potential geopolitical tension

It is no secret knowledge and almost everyone knows about it, dominance over or at least keeping close to raw materials, is one of the key chess moves that could advance one’s strategic position. If EV ecosystem, comprising all types of mobility devices or modes, is the chess game, then lithium is one of the key components to triumph. Looking at the above heat map produced by the U.S. Geological Survey, one could get a rough give-or-take intuitive sense of who is dominating the chess game.

 

What this means is that, if there is anyone who is a little bit keen on any of the EV-related businesses, they should start to join the winning side or at least slowly start divesting away from the disadvantaged side.

 

4. Creating a single point of failure by focusing too much on electric batteries

 

If there are any learning lessons to distill from the Covid-19 pandemic and Russia’s military aggression, I would say that it is the identification and continual mitigations of any single points of failures to important functions. Electric batteries are merely a store of energy, and this energy could directly or indirectly be derived from different sources such as fossil fuel, alternative energy or renewable energy. With the current technology, it is entirely possible to recreate a vehicle that is powered entirely by alternative or renewable energy, without the use of electric batteries.

 

When energy sources were threatened, scientists and engineers quickly leaped forward to develop new ways to powering vehicles. Similarly, if anyone were to push too hard the narrative of EVs while at the same time stifling competition, the tables could flip, thereby forcing competition to try to develop alternate propulsion methods which sidesteps entirely the use of electric batteries. In fact, the technology is already there and energy sources like hydrogen, ammonia, ethanol (from sugar cane), hydrogen fuel cell, solar, road-power, to name a few, are being implemented, adapted and integrated into existing vehicle technology. Even fuel stations are currently being adapted to provide different types of energy sources to vehicles. However, when it comes to safety, I place higher favorable weightage on electric batteries than hydrogen, and I will explain why later.

 

Hydrogen is a promising energy source, and another potential energy source is ammonia. One of the key areas to improve on, is to refine the waste collection and management system, then integrating that understanding into the process of producing hydrogen. This area holds a lot of potential to solving important environmental issues. As such, it is critical to adopt a holistic approach to tackling this challenge and I believe that it could only be achieved by viewing through the lenses of multiple urban system sciences without forsaking the operational details.

 

All details must be considered from an urban system science point of view. For example, positioning of the waste management plants, auxiliary waste management centers and hydrogen power plants, must be precisely planned, according to the future development plans, traffic patterns, national defense considerations, weather patterns and other natural phenomenon. More does not mean better, neither is less bad, but an optimal number of placements should enable complement strengthening of each other’s capabilities.

 

This is important in itself, and also extends its influence on the transport patterns of the waste management vehicles and the hydrogen transport vehicles, affecting factors like traffic volume and national defense. Exploration of Artificial Intelligence in augmenting this area is a promising area, still at a nascent level but definitely achievable.

 

In terms of safety, I think that electric batteries are the better solution compared to hydrogen. Electric batteries burn but hydrogen can cause extremely life-threatening explosions that can take down entire buildings within the destruction perimeter. Protective engineering techniques such as the strategic use of reinforced concrete, steel sheets and others, become very important subjects. The greater the underground hydrogen pipeline network proliferates, the greater need to build in more safety factors. Such consideration becomes exceedingly critical to providing a safe space in highly built up and dense urban environment. There were several past explosions involving natural gas pipelines in New York and the results were skyrocketing.

 

A lot of advance work is needed to develop the certified framework for pyrolysis process, hydrogen production and safety inspection at different stages of the value chain. Apart from that, substantial amount of time must be planned for the local workforce to gain sufficient expertise in these areas before rolling out the initiatives.

How digitalization could disrupt advancements in sustainable urban development

ø

Written by Zeng Han-Jun

 

Even with the easing of Covid-19 restrictions, economic recovery still seemed to be hampered by the global manpower crunch that is faced in many countries. On this point, it appears that this trend might continue to worsen in the short- to medium-term future and is expected to impact many industries, more so in those that rely heavily on manpower.

 

Logistics is one such industry. It is one of the key enablers of the world’s supply chain and entire countries depend on it for movement of goods within countries and across borders. This industry is a critical node to the entire global business system because it interacts with many resources such as equipment, machinery, components, materials, fertilizers, seeds, food and drinks and items, to homes, supermarkets, stores, etc. Many research houses also look at logistics as a proxy to economic performance therefore this gives one a perspective of how important it is.

 

In fact, today’s global distribution, manufacturing and procurement depends heavily on logistics. Even with the growth of additive manufacturing, we would still need to depend on the logistic sector to transport the raw materials for most additive manufacturing operations.

 

The subset components of logistics could be broadly categorized as land, sea and air transport. Simply phrased, goods and materials can be transported to its destination via land, sea and air transport, all of which are important functioning gears to the great machinery of a sustainable urban development.

 

For those reasons, that is why I decided to write about sea transport in this think piece. If people were to draw parallels between cities and urban development to living bodies, then I would boldly say that the sea transport component comprising the shipping capabilities, port management and its connectivity paths to the rest of the inland transport systems, is similar to the mouth of the living body.

 

Just as the mouth receives nourishments to sustain and grow the living body, the entire combined functions of the shipping capabilities and port management, too receives the necessary goods and materials to sustain and build a country. Even large, prefabricated building components are now constructed overseas, then shipped to the designated country for further assembly into residential, office, entertainment or factory buildings.

 

The shipping-related industry is manpower-intensive yet persistently faces the problem of manpower shortages. The pipeline of talents is expected to continue to veer away from this industry in the future. Developed countries are facing similar issues but for different reasons. For developing countries, I believe that one of the reasons why this is happening, is because more people are able to find equal if not more financial compensations in freelancing, office-based jobs, sales career in insurance and real estate or emerging opportunities in content creation, cryptocurrency, web3, etc. Most of these jobs can be performed remotely and also from anywhere in the world as long as there are internet services.

 

Things might worsen when digitalization tweaks up its knob. Once internet services become even more affordable and accessible, developing countries might start to face growing challenges in finding good and reliable workforce and also, find it increasingly difficult for any hope of creating a future-proof sustainable urban development.  The stages of development will be as such. First, the manpower will be affected. Second, means of trading will be affected. Third, economy will be affected. Fourth, social dynamics will be affected.

 

For perspective, let’s use Rwanda as an example. A Maritime engineer in Rwanda, earns an average salary of about USD$500 to USD$700 per month. This is a very good and respectable salary for a Maritime engineer especially after he/she/they/zir have received a number of years of professional trainings in subjects like mathematics, sciences and engineering. All of these culminate in a professionally trained mind that is skillful enough to solve difficult and complex challenges. Furthermore, it is usually in solving these complex challenges that helps to improve the ecosystem. Also, not forgetting the fact that such trainings serve as fundament to receiving and understanding even more complicated and difficult subjects, thereby enabling one to push the envelope for innovations in specialized areas.

 

So, with this perspective in place, let me explain how digitalization, and cheaper and affordable internet services, could disturb the efforts of sustainable urban development. Digitalization is going to enable more innovations which then allow people to monetize digitally in more ways than ever. Cheaper and affordable internet services will allow more people to access these means of livelihood. One popular example of how people can monetize digitally, is on the social media platform, TikTok.

 

The platform offers a variety of content, presented in such easy-to-consume format and its entire user experience leaves many wanting for more. Plus, TikTok performances by people in developing nations, present fresh and never-before-seen content that many global consumers crave for, which is why, many content creators from developing countries did very well during the pandemic.

 

Cross-cultural fascination is one of the stronger and prominent factors in drawing large crowds to these performances. If the audience likes these performances, they can reward the performer by leaving tips.  It was estimated that on an average, a creator with half a million followers or views can earn up to USD$450 a month. There are also other benefits that come along with persistency in content creation, such as sponsorships, advertisements, live shows, plus the ability to work from anywhere. All of these might add up to more than a Maritime engineer’s monthly salary of around USD$500 to USD$700.

 

In fact, there are several other emerging avenues that compete directly at that salary level for talents, which I have already mentioned earlier. The best part about these career alternatives is the low barriers to entry and yet they still remain financially rewarding. Well, of course one can argue that emerging opportunities present new sources of income to individuals and also to the nation but at the expense of what? Conventional strategies of relying on tax revenue to fund studies or subsidize salaries, are dependent on students’ interest in the subject and market forces at play. In the worst-case scenario, digitalization could further hollow out the remaining of what is left of the shipping industry.

 

Countries at risk from the rise of digitalization could be the ones that show the smallest salary gap between professional salaries in the Maritime industry and the potential salary offered by these emerging opportunities. Besides that, those countries with stagnating salaries will face the greatest risk because they might continue to face challenges in keeping pace. In addition to this, we also have inflation to account for. Turnover is going to continue if salaries cannot keep up with global inflation and this might make it even more appealing to turn to alternative livelihoods.

 

Also, more people are starting to question the sustainability quotient of the shipping sector as Environment, Social and Governance (ESG) concerns start to gain traction among the regulators, interest groups, financiers and consumers. Several prominent players are starting to explore alternative energy sources like wind-assisted propulsion, electric batteries, solar, hydrogen, ammonia, etc but overall, the perception of shipping still pales in the area of sustainability. I believe that this would have substantial impact on young people’s future career choices.

 

Automation combined with Artificial Intelligence is definitely one way to overcome constraints, but it involves significant investments, rigorous long-term planning and continuing execution. An intensive study of the organization is required so that some roles could be streamlined, some roles to be eliminated, some roles to be changed entirely, funds and salaries re-allocated and in many cases, knowledge management practices to be enshrined.  The outcome would be an organization that has shrunk in headcounts, to perhaps a few hundred people armed with automation that is powered by Artificial Intelligence, replacing the work performed by more than few thousand workers previously.

 

There are many other ways to explore but that is not the point of this think piece. Perhaps I might reserve it to a future piece (or maybe not). The main point that I am trying to drive across and to get anyone to ponder over is that, firstly, digitalization is going to create new economic opportunities but at what opportunity cost? Second, what are the possible impacts in the short-, medium- and long-term future, and finally, what strategic moves to safe-guard optimally against these impacts?

The one plant crop that might tide us over this period of energy and food uncertainty

ø

Hemp, commonly known as industrial hemp, is a plant of the Cannabaceae family that is typically grown for its bast fiber or edible seeds. The plant is commonly mistaken with cannabis plants, which are used to make marijuana and the narcotic preparation hashish.

 

Although all three products—hemp, marijuana, and hashish—contain tetrahydrocannabinol (THC), a chemical that causes psychoactive effects in humans, the strain of cannabis grown for hemp contains far less THC than that grown for marijuana or hashish.

 

In the public eye, the line drawn between “hemp” and “cannabis” might be a bit murky, but hemp and cannabis aren’t as similar as they may appear.

 

THC is the psychoactive element in cannabis that causes a ‘high,’ according to scientific study. The concentration of THC in a cannabis plant determines whether it is hemp or marijuana. Hemp is defined as having a THC concentration of 0.3 percent or below. Marijuana is defined as having a THC concentration more than 0.3 percent.

 

People do smoke hemp, according to what I’ve learned from asking around. It is quickly becoming one of the most common methods of taking Cannabidiol (CBD). CBD is a substance present in trace amounts in hemp.

 

Although it does not make the smoker high, the user may smoke hemp for a multitude of reasons such as anxiety, depression, pain, inflammation, and overall health and wellbeing.

 

But the focus of my writing is not on smoking it but rather, utilizing this plant for other types of practical and industrial uses.

 

As many of us already know, the majority of the plastic we use today is manufactured from cellulose derived from petroleum. Petroleum is derived from oil, which means that the end-product that is plastic, is highly persistent, very difficult to break down therefore very harmful to our environment.

 

Hemp can be used to create polymers that are both stronger than ordinary plastic and completely biodegradable.

 

Apart from using hemp to replace plastic-based products, we can also rely on hemp as a source of food. Hemp used to be widely recognized as an excellent source of nourishment all across the world. In fact, the plant is still used in some places in Asia today, even though it has become less popular.

 

Hemp seed has an ideal combination of essential fatty acids, amino acids, and oils such as Omega-3 and Omega-6.

 

It is also extremely rich in protein, to the point that some people consider hemp seeds to be a far superior option to high protein sports beverages. These proteins assist to maximize nutrient intake, maintain organs, and even build muscle.

 

Best of all, hemp is also a highly hardy plant that can thrive in harsh environments such as those found all over the world. It does not require pesticides or as much water as other crops. During the nineteenth century, the Australians survived two unusually protracted famines only on hempseed. These are important attributes to finding suitable crops to replace popular grains like rice in the context of Asia, especially when climate change threatens to destroy many types of food crops.

 

Hempseed cake is a food that may be fed to both pets and animals. It is essentially a by-product of pressing hemp for its oils, and it includes all of the nutrients that the animal need. It enables for maximal weight increase while being less expensive than regular feed.

 

Another advantage is that because hemp can be cultivated without pesticides or other dangerous chemicals, and there was research to show that it does not enter the food chain if fed to cattle.

 

When it comes to the built environment sector, you might be mildly surprised that the plant could be used to produce concrete solutions as well. Hempcrete is a hemp-based concrete solution that might be the most helpful of them all.

 

It has seven times the strength of concrete, half the weight, and three times the pliability of hemp. It is also permeable, which means it helps the structure to breathe, reducing moisture buildup and, eventually, mould and other terrible things.

 

Hempcrete also hardens over time and absorbs carbon, so offsetting the carbon impact of the construction project. If the average house were constructed with hempcrete, it could store up to more than 20,000 kilogrammes of carbon.

 

Plus, hemp also has the potential to be a carbon-neutral fuel, or something close to it. During growth, the plant collects CO2 from the environment, and when the fuel is burned, the same amount is released back into the atmosphere.

 

Because hemp-based bio-diesel is biodegradable, accidents and oil spills will not inflict the same amount of environmental harm as conventional oil does. In fact, most diesel engines can still be run on bio-fuel with minimal conversion nowadays.

 

This crop could be used as a short-term replacement to fossil fuel when the entire world attempts to switch over to other forms of renewable and clean energy.

 

On top of that, hemp can also be used to replace cotton that is obtained from harvesting from cotton crop.

 

Hemp contains two types of fibers: lengthy bast fibres found in the stem and hurds, which are the shorter inner fibres of the stem. The bast fibres are the most valuable, accounting for 20-30% of the hemp plant.

 

According to Stockholm Environment Institute study, hemp uses half the acreage of cotton, less chemical fertilisers, and less water than cotton.

 

Finally, hemp can also be used as a material to produce paper.

 

Hemp paper has several advantages over wood paper. For instance, its composition is far superior to that of wood paper. Hemp paper is rich in cellulose and has just 4-10% lignin. Wood pulp, on the other hand, includes 18-30% lignin, which must be chemically removed during the papermaking process.

 

This reduction in chemical treatment means that it consumes less water and generates less waste; the creamy colour also means that it does not require as much bleaching.

 

Hemp paper is also considerably easier to grow and requires far less resources. The quantity of paper that trees can generally create over a 20-year cycle over 4+ acres is the same as the amount of paper that hemp can make in one acre.

 

Like what I mentioned earlier, the entire world would face an onslaught of agriculture and energy crisis if climate change continues to disrupt our traditional ways of life. The switch over to renewable and clean energy is not going to be clear-cut and there will be hiccups during the transition. One way to ease the switch might be to rely on short term methods like bio-fuel.

 

Asian food staples like rice might also be affected by climate change. No matter how much Asians like their rice, it is important to explore other types of more resilient food sources.

Closing the gap between Environment, Social and Governance (ESG) reporting and implementation, and the impact of expanding ESG criteria to include more risks

ø

This week, I encountered three new ideas for inclusion into Environmental, Social and Governance (ESG) ratings, namely mental wellness, responsible use of artificial intelligence (AI) and Multi-National Companies’ (MNC) contributions to the stakeholder communities’ social well-being, the workforce’s professional development and other positive initiatives for the countries in which they operate in.

 

On one hand, the media has reported that there is a large gap between the companies’ ESG reports and on-site implementations. The current narrative is that companies are signing a lot of MOUs and pledges, committing to a lot of sustainability goals and submitting a lot of ESG reports with beautiful graphs, plots, charts and content, but these are not translated into real action.

 

We need a lot more capabilities in recognizing, measuring and assessing ESG risks. ESG risks already manifested in many forms such as environmental impacts, workplace safety, fair consideration for employment, diversity and inclusion issues, proper mechanisms for grievances, stakeholder community management, etc.

 

All these combine to increase substantially the workload of the front-line staff. I see that we currently have three ways to go about solving this.

 

First, hire more people with ESG measurement and assessment skills to perform worksite inspections, outsource ESG measurements and assessments to external consultants or inspectors, train existing staff on ESG-related skills and/ or enhance technology capabilities in recognizing, monitoring and assessing ESG risks. These options are not mutually exclusive and can merge to create a variety of additional solutions.

 

Second, we will need the expertise of domain specialists to help with mitigating the identified ESG risks. When I bring up domain specialists, it is not just the technical experts in the area of carbon emissions, waste reduction, sustainable procurement, etc, but also the people who can contribute their skills in improving gender diversity, workplace safety, corporate and community grievances mechanisms amongst others.

 

Third, the entire organization has to be regularly trained to maintain awareness of such issues. The training could be delivered via on-site workshops, video meetings, and online training modules with or without quizzes or a hybrid of all of the above. Additionally, someone must be responsible for keeping the lines in check. It could be the Chief ESG Officer or Chief Sustainability Officer, together with one or more board members or directors with clear sight on these metrics.

 

Without a proper system in place, the entire exercise could become a one-off event and eventually fade into nothingness.

 

Now, we already have a lot on hand and that is just to satisfy reports and audit requirements. Moving forward, we need to put forth a whole lot more effort towards implementation. In reality, true transformation takes time and changing habits requires discipline. This means that we need to focus a lot more peoples’ attention towards this target for a longer period and it is definitely going to be draining.

 

There is going to be even more work if we include mental wellness, responsible use of AI, and MNC’s contributions to the countries that they operate in.

 

At this point of writing, I only have five thoughts about this.

 

One – anyway we already have so much work going on so we might as well pile on these considerations and strike while the iron is hot.

 

Two – adding more considerations at this time when we are not even executing well, could lead to widening the gap between reporting and implementation.

 

Three – increasing the workload at this moment when the supply of ESG expertise clearly lags far behind the demand for ESG expertise, is a sure-fire way to further stress the system and staff.

 

Four – we need more software capability to augment current workforce and ease the burden that is fueling the Great Resignation.

 

Five – public and private sector will need to work hand-in-hand to reach an acceptable equilibrium.

 

Among these five broad elements that I can think of right now, it is clear that they are more or less within the domains of the proposed inclusions i.e. mental wellness, responsible use of AI and MNC’s contributions to the countries that they operate in.

 

Going overboard with the implementations might actually foul up the proposed inclusions. Why? We might disturb the mental well-being of staff if we add on more criteria without considering carefully the additional workload. We could be the cause of more staff layoff during the pandemic because it is cheaper to deploy software capabilities. MNCs might find themselves in a tougher business landscape and may delink themselves from the countries that impose increasingly stringent criteria for business operations.

 

So, should the new criteria be included or not?

 

In short, this is the chicken and egg paradigm whereby we will be stuck in an infinite loop if no actions are taken. As usual, the way to break through the chicken and egg paradigm is to simply focus on one key path, to forge the way forward, with mechanisms in place for future adjustments and calibrations.

 

Some governments would not care less about MNC’s positions at all. Already I see that there is a trend in many countries to deleverage from MNCs; increasingly requiring them to work with local partners, surfacing issues like the treatment of tax and profits, stipulating better data protection within the local R&D community and others. This is not new, but the trend is definitely stronger now and the new policies reflect that.

 

In fact, there are already some that are placing more chips on local enterprises so that they could square off with the MNCs in the future. Policies are being shaped at the highest level to favor local enterprises to build self-resiliency.

 

Some of these MNCs are also facing increasing regulatory pressures from their countries of origin. I observe these patterns with great interest.

 

At the other spectrum, others are encouraging MNCs to establish presence and work in their respective countries. So, there is certainly going to be more shifts of investments and human resources, and this certainly calls for attention as consideration for shaping ESG frameworks.

 

Aside from this, the responsible use of AI is an equally critical topic. To be honest, most of us are already well-aware of how software capabilities can augment human workers and to some extent, replace some workers as well. Especially when work is increasingly translated to digital format, and this makes it so much easier for automation.

 

Digitalization is the perfect pathway for automation in the future, and to reduce reliance on human workforce.

 

One of my friends used to work with labor unions in the United Kingdom and she often surfaces this experience as one of her trump cards when discussions touch on life achievements. Even then, she never wants to find work in this area anymore.

 

Societies are carefully propped up by myriad of intricate constructs, one of which is for people to be gainfully employed with meaningful work that pays enough for daily expenses, mortgages, other debt commitments and some more. Integration of AI without proper consideration on its impact on the larger ecosystem, can lead to unbalancing the society’s pillars.

 

We need more transparency and to encourage greater participation in crafting and co-creating this future that is jointly owned by all people.

 

Gamification of Science, Technology, Engineering and Mathematics (STEM) Education

ø

Photo by Christina Morillo

 

Our educational system, as well as the way our society has evolved, has conditioned people to become more disinterested in science and technology education. Fewer individuals desire to study engineering and mathematics, which I strongly believe will be a major issue in the future.

 

In fact, many governments have already identified this issue and started working on it for quite some time.

 

Social media platforms have influenced our attention span and modified the way we receive information. Fewer people are reading books. Some merely read the headlines of articles and may skim through a portion of the piece before quitting halfway through.

 

In fact, it is recommended that content creators limit their pieces to no more than three paragraphs and no more than 500 words.

 

Video commercials must be no more than one minute long and must be able to capture people’s attention within the initial three seconds.

 

Professional development books are increasingly shorter, and many are encouraged to pepper pages with condensed summaries throughout the book, which is why the very popular Idiot’s Guide series have those little summary pop ups every few pages.

 

This loss in attention changes how information is collected and consumed and, as a result, affects how teaching and learning take place.

 

How often has your focus wandered during a meeting or a conference, and a phone check has become the norm? Most things receive only a fraction of my attention.

 

Students who listen while texting divide their focus between where their bodies are and where their brains are. The most recent adaption of short attention span instruction may be found in videos that are now available on Tik Tok and Instagram.

 

There is only one notion, one idea, and one instruction and no reading required, which is why these social media platforms are huge hits with the younger generation.

 

In a recent ranking survey done by an East Asian country, they ranked South Korea has having the best mathematics education system, followed by Singapore and the third place goes to Japan.

 

This East Asian country used to consider themselves as the best in providing mathematics education, but they’ve determined that their ranking has fell. They considered this a major issue and are putting their best people to work with the private sector, to develop a proposal to rectify it.

 

Still, research is being done by the best to further improve their position and one of the latest ideas is to introduce gaming to teach science, mathematics and programming.

 

I saw the latest research on teaching with games, and it allows players to immerse themselves in a Role-Playing Game (RPG) with attention-grabbing storyline that’s paired with beautiful graphics. Players will be able to solve interesting puzzles and fight fantastic battles with enemies throughout the game, and somehow all these actions are performed by solving programming scenarios.

 

By the end of the game, you are supposed to be able to understand the logic flow of programs and how to sew together the different syntaxes to achieve your desired programming outcomes.

 

It’s really quite fun and research is being done to quantify its relationship to improving users’ programming proficiency while keeping their attention on the game.  I think that the research results should be released in about two to three months’ time.

 

I believe that within a few more years, we will no longer need to type syntaxes in order to program. Long gone will be the days whereby you’ll feel cool to be able to type in long strings of words, press “Enter” and then strings upon strings of neon green colored fonts on black background scrolls endlessly down the computer screen. Think Matrix opening and ending scenes.

 

Anyway, if you think that’s cool, you’ll most likely might be considered as outdated by the younger generation.

 

Graphical programming is unquestionably on the rise, and more parts of Artificial Intelligence (AI) will eventually be merged with programming languages, making it easier to program in the long run.

Smart grid and renewable energy must support the agricultural sector, not destroy it

ø

Photo by Sippakorn Yamkasikorn

 

A smart grid is a digitally enabled electrical system that collects, distributes, and works with data on all electricity providers and consumers’ behaviour in order to enhance the efficiency, reliability, and sustainability of power delivery.

 

Smart grids generate massive amounts of data, which may be examined using data analytics and with machine learning, converted into valuable insights. Weather conditions, demand and supply records, and location are all examples of data metrics. 

 

With this data, operators may make smarter judgments about the transfer of energy from one location to another, proactively ensuring supply and minimising waste.

 

Southeast Asia is definitely a rising smart grid industry that is making tremendous progress and offers big advantages for customers as well as significant potential for suppliers by the end of this decade. 

 

Countries in Southeast Asia are growing rapidly and extending their web of electrical grid to more communities. With more foreign capital inflow and a growing middle-class, it makes perfect sense for governments to build smart grid roadmaps with implementation strategies. 

 

Outside of China and India, Southeast Asia has the greatest expected GDP growth rate of any emerging smart grid market. These strong GDP growth rates, however, are not assured and might pose structural, political, and social difficulties to Southeast Asian countries.

 

According to Global Climate Scope, Southeast Asia would invest up to $14 billion by 2030 to achieve universal power access, with distant microgrid systems serving 75 percent of the off-grid population.

 

Already, there are significant hurdles to crafting policies to tackle connection costs, network costs, maintenance cost while ensuring a healthy amount of return of investments for investors, suppliers and operators. 

 

Actual construction is another set of obstacles as some of the Southeast Asian countries might have to cough up the manpower and expertise to undertake huge infrastructure projects to lay underwater cables between islands, provinces and states.  

 

In the roadmap of some Southeast Asian countries, the administration had planned for the smart grid to enable single proprietors and individual business owners to sell a small quantity of power generated by their own entrepreneurship to the grid via a smart meter.

 

This can potentially be another issue if the pricing is not done right and could impact the agriculture industry. 

 

Agriculture is critical to the economy’s survival and growth. It’s the foundation of everything that motivates humans to survive. It not only produces food and other basic resources, but also presents job opportunities. Yet in many countries, agricultural workers are leaving the sector. 

 

According to the Indonesian National Development Planning Agency (Bappenas), their projections show a steady drop of agricultural workers. It revealed that in 1976, 65.8 percent of Indonesian employees were employed in the agriculture sector. 

 

However, in 2019, it fell dramatically to only 28%. Part of this reduction might be attributed to agricultural employees moving to other industries, particularly to the service sector. The service sector workers accounted for 23.57 percent in 1976 and 48.91 percent in 2019.

 

When farm owners are able to sell the power generated by their own renewable energy devices such as solar panels, windmill, etc to the grid, they might consider giving up farming entirely. These farm owners might find it financially feasible to install more renewable energy devices and sell the electricity instead of rearing animals, performing soil maintenance and taking care of agriculture produces. 

 

In other parts of the world, a growing number of farmers and ranchers are supplementing their income by capturing the wind that blows over their land and converting it into electricity. In addition, new renewable alternatives are becoming accessible.

 

NPR reported in the United States that farmers in the Midwest both support and oppose major solar generating ventures on farms. Some people make significantly more money leasing land than they do cultivating crops. Others are concerned about the loss of productive land.

 

Leaving the situation entirely to market forces, will have the farm owners to simply choose the option that yields the highest return, but this might further jeopardise the agriculture sector in years to come.

 

Renewable energy sources and smart grid must be able to support core sectors like agriculture, not destroy it. 

Log in